

Instituto Tecnológico de Pabellón de Arteaga

Departamento de Ciencias Económico Administrativas

PROYECTO DE TITULACIÓN

CAMBIO DE APLICACIÓN DE PINTURA, DE UN PROCESO MANUAL A UNO AUTOMATIZADO EN PRODUCTO P33A.

PARA OBTENER EL TÍTULO DE

INGENIERO EN GESTIÓN EMPRESARIAL

PRESENTA:

JUAN RICARDO CASTAÑEDA SANTILLÁN

ASESOR:

ING. ARTEMIO SOLÓRZANO FUENTES

MAYO

CAPÍTULO 1: PRELIMINARES

1.1 Agradecimientos.

Este trabajo es dedicado principalmente a Dios, por haberme permitido llegar hasta donde estoy ahora, en este momento tan importante en mi vida, a mi mamá por ser el pilar más importante y por demostrarme su apoyo incondicional sin importar las diferencias de opiniones, a mi papá, por su gran ejemplo de sabiduría y dedicación en los proyectos que se propone, a mis hermanos, por estar siempre ahí, por compartir momentos significativos, por estar dispuestos a escucharme y ayudarme en cualquier momento, a mi esposa, porque gracias al apoyo que me dio estoy aquí, me motivo a iniciar un proyecto que se miraba tan lejos de alcanzar, pero que ahora gracias al esfuerzo y dedicación, está por concluir, a mis compañeros que sin el maravilloso equipo y compañerismo que hicimos, jamás hubiéramos logrado esta meta.

De igual forma agradezco a mi asesor de Ing. Artemio Solórzano Fuentes, que gracias a sus consejos y correcciones he podido culminar este trabajo, a todos los profesores que me han visto crecer como persona y gracias a sus conocimientos hoy puedo sentirme dichoso y contento. A mi asesor externo Ing. Abraham López Esparza por ayudarme y guiarme en este proyecto y la empresa Marelli por darme cabida dentro de ella y permitirme desarrollar el proyecto dentro de sus instalaciones y con su equipo de trabajo.

Gracias a todos por haber estado en mis momentos de estrés, frustración y desesperación, pero también por estar en mis momentos más grandiosos y maravillosos.

Agradezco a la empresa Marelli Mexicana por permitirme realizar el proyecto de recidencias profesionales en su organización (Ver anexo 1 y 2)

1.2 Resumen.

Durante el tiempo de realizaciones este proyecto, primero se comenzó con la detección de los principales problemas que se tenían en la línea de producción involucrada, en la cual se clasifico como punto crítico la generación de SCRAP y el incumplimiento del plan de producción, todo esto generado por la deficiencia de la línea de pintura actual para el modelo P33A. Una vez que se obtuvieron los datos de la condición actual y junto con la participación de un equipo multidisciplinario, se llevan a punto de debate las diferentes estrategias para la solución a la problemática de la línea de producción acorde al producto P33A y lograr cumplir los objetivos y demanda del cliente.

Índice

CAPÍTULO 1: PRELIMINARES	2
1.1 Agradecimientos.	2
1.2 Resumen	3
1.3 Lista de Tablas	5
1.4 Lista de Figuras	6
CAPÍTULO 2: GENERALIDADES DEL PROYECTO	7
2.1 Introducción	7
2.2 Descripción de la empresa u organización y del puesto o área del trabajo del res	idente 8
2.3 Problemas a resolver, priorizándolos	10
2.4 Justificación	11
2.5. Objetivos	12
CAPÍTULO 3: MARCO TEÓRICO	13
3.1 Marco Teórico (fundamentos teóricos).	13
CAPÍTULO 4: DESARROLLO	16
4.1 Cronograma de actividades	16
4.2 Elaboración de diagnóstico	16
4.3 Elaboración de plan de acción	23
4.4 Implementación de plan de acción	23
4.5 Evaluación de la efectividad de las acciones implementadas	29
4.6 Auditoria de procesos de pintura y ensamble.	31
CAPÍTULO 5: RESULTADOS	34
5.1 Resultados.	34
CAPÍTULO 6: CONCLUSIONES	40
6.1 Conclusiones del Proyecto	40
CAPÍTULO 7: COMPETENCIAS DESARROLLADAS	41
7.1 Competencias desarrolladas y/o aplicadas	41
CAPÍTULO 8: FUENTES DE INFORMACIÓN	42
8.1 Fuentes de información	42
CAPÍTULO 9: ANEXOS	44
Anexo 1. Carta de aceptación	44
Anexo 2. Autorización de proyectó	45

1.3 Lista de Tablas

Tabla 4.1 – Junio	17
Tabla 4.2 – Julio	20
Tabla 4.3 – Agosto	21
Tabla 5.1 – Septiembre	35
Tabla 5.2 – Octubre	36
Tabla 5.3 – General	37
Tabla 5.4 – Producción Anterior	39
Tabla 5 5 – Producción Actual	30

1.4 Lista de Figuras

Figura 2.1 – Organigrama	9
Figura 4.1 – Cronograma	16
Figura 4.2 – Pareto Junio	18
Figura 4.3 – Pareto Julio	19
Figura 4.4 – Pareto Agosto	21
Figura 4.5 – Diagrama	22
Figura 4.6 – Plan	23
Figura 4.7 – Prueba Tape	25
Figura 4.8 – Prueba Clip	25
Figura 4.9 – Calidad	25
Figura 4.10 – Cambio	25
Figura 4.11 – Lay Out Nueva Condición	25
Figura 4.12 – Lay Out Body Color	26
Figura 4.13 – HOE 1	27
Figura 4.14 – HOE 2	27
Figura 4.15 – Matriz de Diferencias	28
Figura 4.16 – Control 3N	28
Figura 4.18 – Reporte de producción por hora	30
Figura 4.19 – Auditoria Diaria	31
Figura 4.20 – Observación de la operación	32
Figura 4.21 – Check list	33
Figura 5.1 – Pareto Septiembre	35
Figura 5.2 – Pareto Octubre	36
Figura 5.3 – Grafica General	37

CAPÍTULO 2: GENERALIDADES DEL PROYECTO

2.1 Introducción

La metodología Kaizen (mejora continua) es la una de las herramientas más utilizadas en la industria para generar cambios significativos en todos los niveles de las empresas u organizaciones.

El Kaizen implementado en el siguiente proyecto genera un cambio significativo de procesos de producción el cual se engloban dos grandes factores por los cuales se analizan las ventajas y desventajas de realizar el cambio para evitar afectaciones principalmente a cliente sin dejar de lado las necesidades y beneficios de la empresa.

El cambio generado es en base a dos factores internos de suma relevancia en un proceso de aplicación de pintura, los cuales son JPH (Job Per Hour) y el DPR (Direct Pass Rateo), ambos son la base de medios de los procesos de aplicación de pintura, en el proyecto descrito en las siguientes líneas se eleva el DPR de un 50% a un 90% considerando como máximo nivel de DPR en un proceso de pintura el 98%.

El cambio significativo del DPR afecta directamente a los estándares establecidos de JPH ya que con un DPR alto el tiempo para la fabricación de los productos disminuye lo cual será detallado conforme avanza el proyecto.

Al finalizar el proyecto se contará con una mejor calidad de los productos P33A y una línea estable con posibilidades de un aumento en la demanda de los productos si es requerida por cliente.

2.2 Descripción de la empresa u organización y del puesto o área del trabajo del residente.

La empresa Marelli mexicana, es una empresa con giro industrial automotriz que cuenta con distintas plantas, las cual se encuentran situadas dentro del estado de Aguascalientes, una de las plantas en el parque Industrial San Francisco de los Romo, otra planta se ubica en el Parque Industrial del Valle de Aguascalientes (PIVA), además de tener líneas de producción dentro de NISSAN 1 y 2, COMPAS y CIVAC (Cuernavaca).

Nuestra Misión, Visión y Valores son:

Global: Creamos la marca proveedora más fuerte a nivel mundial combinando cohesivamente nuestras diversas culturas en un equipo dinámicamente ágil.

Inspirada: Somos persistentes para invertir en los valores centrales de Marelli generando Orgullo, Pasión y Lealtad en todos los miembros de nuestro equipo.

Líder Mundial en Innovación: Empleamos creatividad y un espíritu de pasión al trabajo de nuestros miembros de equipo para ser los primeros en el mercado con productos y procesos de alta calidad para nuestros clientes.

Sociedad Sustentable: Estamos comprometidos a ser una corporación ciudadana socialmente responsable que proporciona valor a nuestros accionistas, comunidades y miembros de equipo.

Marelli ofrece productos para automóviles de las marcas NISSAN, Mazda, Honda y Tesla siendo NISSAN su cliente principal, además de ser proveedor de la empresa Jatco en Electrónicos, sistemas de escapes, compresores, sensores, paneles, consolas y sistemas de aire acondicionado.

Dentro de planta PIVA, se localiza el área de Body Color 1 (área de pintura, dentro de la empresa existen tres áreas de pintura Body Color 1, 2 y 3), la cual está activa desde el año 2000 (Body Color 2 desde el año 2014 y Body Color 3 desde el año 2019); en esta área se procesan partes plásticas las cuales son recubiertas con una o dos capas de pintura en base a las especificaciones del cliente, las partes

plásticas son desarrolladas para autos como Nissan Sentra, Versa, Kicks, NP300 Frontier, Tesla Model3 entre otros, los procesos van desde la inyección de las piezas, pintado, grabado laser, ensamble y entrega final al cliente.

La figura 2.1 representa el organigrama del área de manufactura donde se desarrollará el proyecto.

Figura 2.1 – Organigrama

2.3 Problemas a resolver, priorizándolos.

El proyecto de intervención se desarrollará dentro de la empresa Marelli mexicana la cual se encuentra ubicada en el parque industrial del valle de Aguascalientes.

El proyecto se enfocará al cambio de aplicación de pintura de un método tradicional (manual) a un método automatizado con la encomienda de generar un cambio significativo en el producto, en base a la calidad y apariencia del mismo.

Se realizará el cambio total en un periodo de 2 a 5 meses con las condiciones señaladas dentro de los estándares del cliente ya especificados al inicio de la manufactura del producto.

El cambio de aplicación tiene como principal alteración en la línea de aplicación de pintura del área de Body Color 1 ya que se generará un incremento a la producción de la misma.

El cambio se enmarca o genera por un bajo rendimiento de la línea de aplicación actual en donde se encuentra el producto P33A, el cual hasta el momento ha generado un retraso de material con forme a los requerimientos del cliente.

La generación del cambio supone una pronta respuesta para así poder generar la confianza del cliente en que contará en su línea de producción con un producto de calidad en tiempo y forma.

La principal limitante del proyecto la genera el tiempo de respuesta a la generación de los resultados positivos ya que al ser un producto de producción masiva este se tiene que estar produciendo y entregando con forme a las necesidades del cliente.

La pieza para ser aceptada por parte de los controles de calidad debe contar con un brillo de 3 a 5 GU la cual se evalúa por medio de un brillometro el cual se encuentra certificado por el área de calidad para su utilización.

2.4 Justificación

El origen de las necesidades del proyecto radica en el bajo nivel de producción en la situación actual que se encuentra el producto, en la línea de producción ya mencionada y con los estándares ya establecidos la línea tiene como principal problema la baja calidad del producto aunado a la discrepancia en la aplicación de pintura manual, en el proceso actual se contemplan la participación de un total de 8 personas divididas en dos grupos con el fin de cumplir con la demanda del producto, la cual es de aproximadamente 20000 piezas mensuales (las líneas de producción varían mes con mes en cuanto a volumen de producción ya que estas producen bajo demanda de cliente).

En la situación actual de la línea de producción del producto P33A la cantidad de piezas estimadas diarias es de 924 piezas, de las cuales actualmente la línea de producción solo cumple con 370 piezas diario (el 40% de la producción).

La línea también cuenta con un Scrap del 30% sobre lo producido el cual es un margen muy elevado para la garantía del producto como negocio.

Aunado a toda la problemática dentro de la línea actual del producto P33A se tiene un elevado índice de tiempo extra y un retraso en los envíos a cliente ya que no se cumplen con los planes de producción.

El fin del cambio es generar un DPR del 10% (porcentaje de defectivo por producción) y cumplir en un 100% con el plan de producción (demanda de cliente), para lograr generar este cambio tan significativo se plantea realizar la aplicación de pintura dentro de Body Color 1 en un proceso automatizado el cual genera una mejor calidad de los productos y una mayor productividad de los mismo.

Para lograr el cumplimiento de los puntos mencionados de igual forma que la aplicación de pinturea se realizara en Body Color 1, también se llevara a cabo el ensamble de la pieza dentro del área de Body Color 1-Ensamble para garantizar la productividad y tener un control al 100% del producto P33A.

Una más de las ventajas y/o beneficios que se tendrán con la inclusión del producto dentro de las líneas de Body Color1 será la eliminación del Tiempo Extra, ya que la

línea actual donde se produce el material P33A cuenta con un alto índice de Tiempo Extra al no cumplir los planes de producción y tener una alta demanda de cliente, con la incursión del producto en Body Color se estará eliminando en un 100% el tiempo extra hacia este producto.

Además de evitar que se paguen altos costos en los envíos del producto ya que al ir retrasados los envíos se recurría a los envíos mediante vuelos y esto elevaba en costo de operaciones para la empresa.

2.5. Objetivos

Objetivo general.

Cambiar aplicación de pintura, de un proceso manual a uno automatizado en producto P33A.

Objetivos específicos.

- 1. Elaborar un análisis causa-efecto del cambio de aplicación de pintura.
- 2. Implementar un plan de acción para el cambio de aplicación.
- 3. Evaluar la efectividad de las acciones implementadas.

CAPÍTULO 3: MARCO TEÓRICO

3.1 Marco Teórico (fundamentos teóricos).

La manufactura esbelta o Lean Manufacturing nació en los años 60 con el fin de mejorar los sistemas de producción de la fábrica Toyota. Mediante diferentes herramientas se busca:

Eliminar todo tipo de desperdicio.

La mejora constante, donde se aplica la filosofía KAIZEN.

Una mejora estable y sostenible en el tiempo de la producción y la calidad.

La manufactura esbelta es uno de los medios más eficaces que utilizan las empresas en la actualidad para mejorar sus procesos, la cual ayuda a implantar una filosofía de mejora continua que le permita a las compañías reducir costos.

El Kaizen como herramienta Lean de la mejora continua es una de las más sencillas y de las más difíciles de aplicar ya que se enfoca en las personas, su implicación y su compromiso con la excelencia.

La metodología Kaizen es una metodología basada en la mejora continua, el cual dio su origen después de la segunda guerra mundial en al país de Japón, esto después de una serie de seminarios organizados por la unión japonesa de científicos la cual tenía como invitados a una serie de cinéfilos y expertos estadounidenses que después de los de los métodos compartidos dio como resultado esta metodología.

La palabra Kaizen se conforma de dos palabras KAI: cambio, ZEN: Bueno (para mejorar), significa mejoramiento continuo en cualquier entorno, personal, social y trabajo.

La metodología Kaizen se ha puesto en práctica en empresas como Toyota, Sony o Walt Disney. Dentro de la rama automotriz es una base muy grande para continuar con un cambio significativo de mejora constante dentro de las líneas productivas y lograr generar la disminución al máximo de los desperdicios o mudas que la línea genera.

La implementación de un Kaizen genera una serie de pasos los cuales según la literatura en que se base cada uno de ellos están escritos de una forma un poco diferente más sin embargo la forma o manera de ejecución es la misma y los resultados se basan en el mismo argumento mejora continua o mejoramiento.

Los pasos para la aplicación o ejecución pueden son los siguientes basándonos en la literatura de Adriana M. Pérez Henao (Henao, 2019).

1.- Selección del tema y definición de objetivos.

Los temas pueden ser productividad, calidad o seguridad y os objetivos se fijan según el tema elegido y acorde a los objetivos de la empresa.

2.- Establecer un equipo de trabajo.

Establecer un equipo multidisciplinario conformado por diferentes áreas o procesos que en conjunto ayuden a establecer el mejor método o idea para la realización del mismo.

3.- Obtener y analizar datos.

En este punto de recolección de datos la finalidad es detectar el o los principales factores y/o problemáticas de la línea.

4.- Genbutsu Gemba (Observa el proceso)

En esta fase el equipo se enfoca en corroborar los datos obtenidos con la observación de la operación o proceso para confirmar la veracidad de los datos.

5.- Plan de Acción.

Tomar acciones inmediatas para los problemas más críticos de la línea de producción al igual que establecer cada una de las acciones a realizar registrándolas con la fecha compromiso de aplicación y el responsable de la actividad.

6.- Seguimiento y evaluación de resultados.

El equipo realizara un seguimiento mediante gráficos y datos de la línea y se procede con los pasos anteriores para la verificación del proceso.

7.- Estandarización.

Después de la aplicación de las actividades y la generación de resultados positivos se realiza la documentación del problema y como se corrigió para que sea la base lo posibles implementaciones en potras áreas de trabajo.

Implementar estrategias de cambio factibles en el proceso productivo, para lograr un cambio significativo en el área o línea mediante la metodología Kaizen para seguir mejorando las áreas de oportunidad de las líneas de trabajo y con ello seguir mejorando y avanzando en la erradicación de los problemas de las líneas de producción.

Se debe considerar que las empresas toman las medidas necesarias para aumentar la productividad de los recursos y generar la reducción de costos mientras establezcan mejores operaciones.

La filosofía Kaizen es la base de la mejora continua de las empresas en la actualidad y se basan en el ingenio, conocimiento y experiencia del personal para identificar los factores que podrían ser mejorados, así como factores de riesgo y encontrar la manera para que tengan un mayor funcionamiento y efectividad.

CAPÍTULO 4: DESARROLLO

4.1 Cronograma de actividades

La figura 4.1 representa el cronograma de actividades establecido por el equipo multidisciplinario.

Cronograma de actividades											
A-stated-	Agosto		Septio	Septiembre		Octubre		Noviembre		mbre	
Actividades	PLAN	REAL	PLAN	REAL	PLAN	REAL	PLAN	REAL	PLAN	REAL	
Elaboración de diagnóstico											
Elaboración de plan de acción											
Implementación de plan de acción											
Evaluación de la efectividad de las acciones implementadas:											
Auditoria de proceos de pintura y ensamble.											
Elaboración de reporte final (Resultados).											

Figura 4.1 – Cronograma.

4.2 Elaboración de diagnóstico

Se realizó un diagnóstico de la problemática en la línea de producción actual del producto P33A, en la cual se tomaron en consideración el JPH (Job Per Hour) y el DPR (Direct Pass Rateo), ya que son los dos puntos críticos de la línea de producción.

El proceso de producción del modelo P33A consta de tres procesos establecidos, aplicación de pintura, ensamble de tape y ensamble de clip – empaque.

El proceso que actualmente causa la problemática es el proceso principal que es aplicación de pintura, ya que siendo este el primer proceso no permite continuar con los subsecuentes y establecer los tiempos verdaderos de la producción.

Con ello el cambio de aplicación se realizará a un método y/o proceso más controlado, implicando el cambio de toda la línea de producción (aplicación, ensamble y empaque) al área que adoptará el nuevo método.

El análisis de la línea de producción con la condición actual muestra un defectivo elevado que es ocasionado por la discrepancia de aplicación de pintura de una a otra aun así se encuentre el mismo jig de aplicación.

En la línea actual del producto P33A se cuenta con un elevado defectivo, la línea de inicio producción masiva el mes de octubre con base a la demanda de cliente y con un levado defectivo por la diferencia de aplicación en cada una de las piezas producidas.

En base a los datos obtenidos en los pilotajes en el proceso de aplicación manual en los meses de Junio (Ver Tabla 4.1 y Figura 4.2) y Julio (Ver Tabla 4.2 y Figura 4.3) se toma la decisión del cambio de aplicación de pintura manual a una aplicación automatizada.

FECHA	PART NUM	DESCRIP	DEFECTIVO	DEF. ACUM.	% DEF.	PIEZAS OK
20210609	687 P€5 RR 0A	FIN-INST,B	169	1 6 9	79.72%	43
20210610	687 P€5 RR 0A	FIN-INST,B	162	331	67.5 0 %	78
20210611	687 P€5 RR 0A	FIN-INST,B	156	487	79.19%	41
20210603	687 P& RROA	FIN-INST,B	143	630	76.06%	45
20210610	687 P& RROA	FIN-INST,B	133	7 6 3	₭5.84%	69
20210608	687 P& RROA	FIN-INST,B	130	893	80.25%	32
20210611	687 P& RROA	FIN-INST,B	122	1015	73.05%	45
20210616	687 P& RROA	FIN-INST,B	118	1133	79.73%	30
20210617	687 P& RROA	FIN-INST,B	108	1241	80.00%	27
20210611	687 P& RROA	FIN-INST,B	106	1347	73.10%	39
20210604	687 P& RROA	FIN-INST,B	104	1451	80.62%	25
20210622	687 P& RROA	FIN-INST,B	99	1550	59.64%	67
20210607	687 P& RROA	FIN-INST,B	93	1 64 3	79.49%	24
20210617	687 P& RROA	FIN-INST,B	90	1733	83.33%	18
20210624	687 P& RROA	FIN-INST,B	74	1807	79.57%	19
20210624	687 P& RROA	FIN-INST,B	73	1880	68.22%	34
20210625	687 P& RROA	FIN-INST,B	67	1947	56.30%	52
20210602	687 P& RROA	FIN-INST,B	6 2	2009	66.67%	31
20210604	687 P& RROA	FIN-INST,B	60	2069	80.00%	15
20210609	687 P& RROA	FIN-INST,B	53	2122	6 9.74%	23
20210630	687 P€5 RR 0A	FIN-INST,B	48	2170	72.73%	18
	TOT	AL	2170		73.68%	775

Tabla 4.1 – Junio

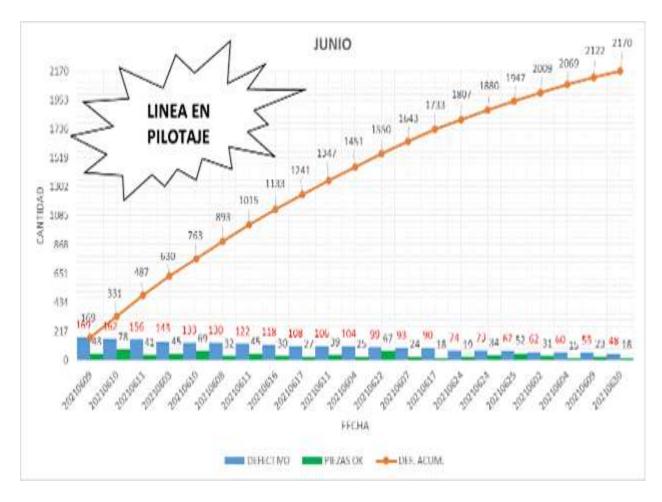


Figura 4.2 – Pareto Junio

Las figuras anteriores nos muestran como fue la variación de la aplicación manual la cual se muestra en el impacto directo a un defectivo elevado, dentro del pilotaje del mes de junio se produjeron un total de 2578 piezas de las cuales solo 775 piezas obtuvieron un dictamen "OK" (Producto terminado) lo cual representa solo el 26.18% del total de piezas, lo que se resume con un DPR promedio del 26.32% teniendo como objetivo mínimo el 85% en la línea de aplicación manual.

La Tabla 4.2 muestran los pilotajes del mes de Julio el cual siguió con la tendencia del elevado defectivo de la línea de producción, el cual promedio un DPR del 30% del mes de Julio y se representa en la figura 4.3.

FECHA	PART NUM	DESCRIP	DEFECTIVO	DEF. ACUM.	% DEF.	PIEZAS OK
20210726	687 P65 RR0A	FIN-INST,B	168	168	66.67%	84
20210722	687 P65 RR0A	FIN-INST,B	159	327	70.35%	67
20210719	687 P65 RR0A	FIN-INST,B	148	475	65.49%	78
20210712	687 P65 RR0A	FIN-INST,B	139	614	75.54%	45
20210714	687 P65 RR0A	FIN-INST,B	134	748	71.66%	53
20210720	687 P65 RR0A	FIN-INST,B	127	875	75.15%	42
20210723	687 P65 RR0A	FIN-INST,B	118	993	77.63%	34
20210713	687 P65 RR0A	FIN-INST,B	113	1106	60.75%	73
20210709	687 P65 RR0A	FIN-INST,B	107	1213	66.46%	54
20210721	687 P65 RR0A	FIN-INST,B	99	1312	83.90%	19
20210708	687 P65 RR0A	FIN-INST,B	94	1406	87.04%	14
20210729	687 P65 RR0A	FIN-INST,B	86	1492	75.44%	28
20210727	687 P65 RR0A	FIN-INST,B	79	1571	48.47%	84
	TOT	AL	1571		69.95%	675

Tabla 4.2 – Julio

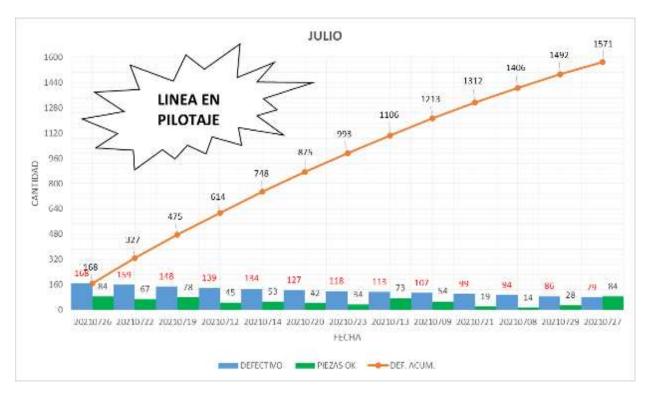


Figura 4.3 – Pareto Julio

La línea de producción arranco el mes de agosto con una tendencia similar a la mostrada en los meses de pilotaje, se obtuvo una mejora de aproximadamente el 25% en cuanto al DPR llegando así hasta un promedio del 55% en ese aspecto (Ver Tabla 4.3 y Figura 4.4), aun no se ha llegado a una evaluación o toma exacta de los tiempos de producción esto debido al alto defectivo de la línea y con ello paros constantes en el ensamble de material.

FECHA	PART NUM	DESCRIP	DEFECTIVO	DEF. ACUM.	% DEF.	PIEZAS OK
20210806	687 P65 RROA	FIN-INST,B	512	512	54.94%	420
20210809	687 P65 RROA	FIN-INST,B	487	999	49.14%	504
20210813	687 P65 RROA	FIN-INST,B	456	1455	52.05%	420
20210803	687 P65 RROA	FIN-INST,B	435	1890	53.51%	378
20210802	687 P65 RROA	FIN-INST,B	419	2309	62.44%	252
20210816	687 P65 RROA	FIN-INST,B	403	2712	61.53%	252
20210826	687 P65 RROA	FIN-INST,B	398	3110	65.46%	210
20210825	687 P65 RROA	FIN-INST,B	356	3466	54.77%	294
20210819	687 P65 RROA	FIN-INST,B	344	3810	45.03%	420
20210827	687 P65 RROA	FIN-INST,B	319	4129	60.30%	210
20210818	687 P65 RROA	FIN-INST,B	316	4445	55.63%	252
20210820	687 P65 RROA	FIN-INST,B	309	4754	55.08%	252
20210823	687 P65 RROA	FIN-INST,B	289	5043	49.57%	294
	TOT	AL	5043		54.81%	4158

Tabla 4.3 - Agosto

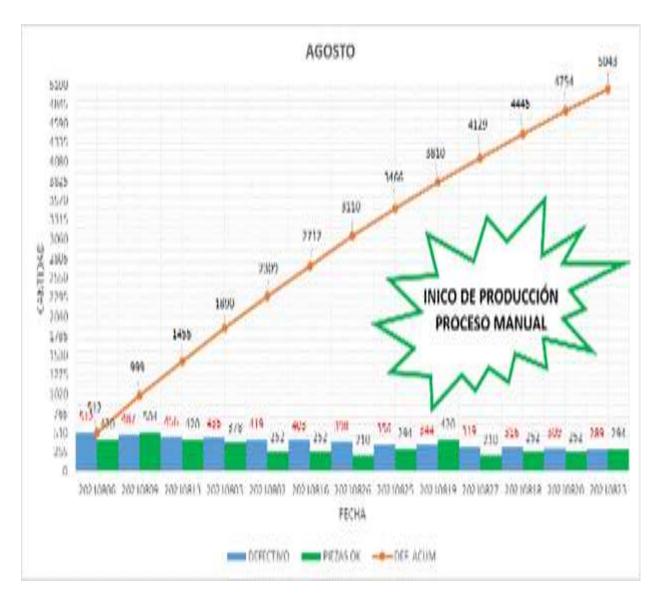


Figura 4.4 - Parto Agosto

La figura 4.5 representa un diagrama causa-efecto para determinar la causa raíz de la problemática en la línea de producción.

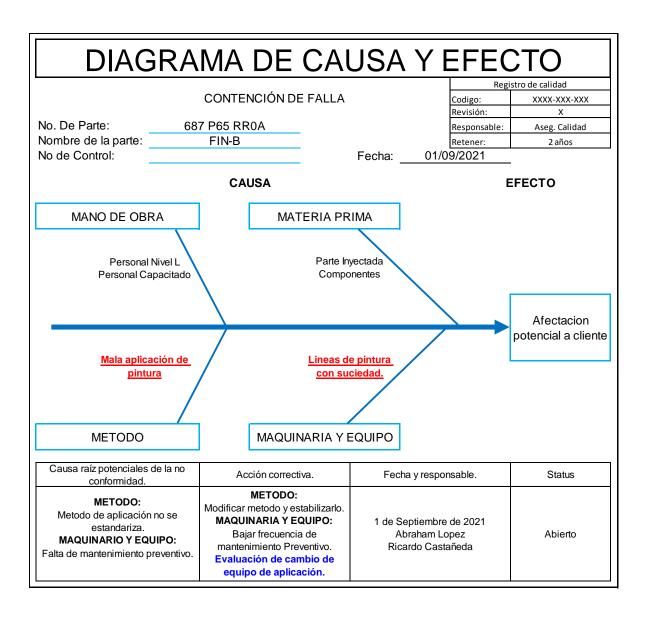


Figura 4.5 – Diagrama

El producto P33A seguirá con su producción en la línea actual mientras se desarrolla el cambio de aplicación.

4.3 Elaboración de plan de acción

Con forme al análisis realizado de la línea de producción actual se realizará un cambio el método de aplicación del producto P33A en el que su proceso actual de aplicación manual se cambiará a un proceso automatizado y a su vez se reducirá el desperdicio en el proceso de fabricación (piezas NG) de la línea de producción, basándose en la metodología de KAISEN (mejora continua).

Se elabora un cronograma de actividades de KAISEN con los responsables de ejecución de estas y se obtuvo la autorización del supervisor, en esta etapa se obtiene apoyo por parte de personal de Mejoras para la realización de algunas actividades que requerían de una actividad extra, a continuación, se muestra el plan de actividades de Kaisen que se desarrollan de manera inmediata para el cambio ya que por la demanda de cliente así lo amerita (Ver Figura 7).

ITEM	Actividad KAISEN	Línea	Equipo	Resp	Resp. Seg.	Status	Fecha
1	Desarrollar progrma de aplicación en Robot.	Body	Robot de	Equipo multidisciplinario	Juan Ricardo	PLAN	6-Aug-21
1	Desarronar progrima de apricación en nobot.	Color 1	Aplicación	Ing. Procesos	Castañeda	REAL	6-Aug-21
2	Pruebas de pintura y liberación de calidad.	Body	Robot de	Equipo multidisciplinario	Juan Ricardo	PLAN	9-Aug-21
	Tracbas de printara y ribertación de canada.	Color 1	Aplicación	Ing. Procesos - Calidad	Castañeda	REAL	9-Aug-21
3	Pruebas de ensamble en linea de producción actual.	Body	ENSAMBLE	Equipo multidisciplinario	Juan Ricardo	PLAN	13-Aug-21
		Color 1	P33A	Ing. Procesos - Calidad	Castañeda	REAL	13-Aug-21
4	Determinar LAYOUT en Body Color 1	Body	Body Color 1	Equipo multidisciplinario	Juan Ricardo	PLAN	17-Aug-21
7	Determinal Extroor en Body Color 1	Color 1		Equipo muntidiscipimano	Castañeda	REAL	17-Aug-21
5	Verificacion de equipos de trabajo (Linea actual)	Body	ENSAMBLE	Equipo multidisciplinario	Juan Ricardo	PLAN	20-Aug-21
	vermedicin de equipos de trabajo (Ented detadi)	Color 1	P33A	Equipo martialistipimano	Castañeda	REAL	20-Aug-21
6	Elaboracion de docuemtación (HOE, 3N, MD)	Body	ENSAMBLE	Equipo multidisciplinario	Juan Ricardo	PLAN	23-Aug-21
Ů	Elaboration de docuerntation (not, siv, mb)	Color 1	P33A	Equipo martialistipimario	Castañeda	REAL	25-Aug-21
7	Instalacion de mesas de trabajo en Body Color 1	Body	Body Color 1	Equipo multidisciplinario	Juan Ricardo	PLAN	28-Aug-21
,	mistalación de mesas de trabajo en body color 1	Color 1		Equipo muntidiscipimano	Castañeda	REAL	28-Aug-21
8	Inicio de producción Body Color 1	Body	Body Color 1	Equipo multidisciplinario	Juan Ricardo	PLAN	1-Sep-21
0		Color 1		Ing. Procesos	Castañeda	REAL	1-Sep-21
9	Verificacion de Documentos de proceso.	Body	Body Color 1	Equipo multidisciplinario	Juan Ricardo	PLAN	1-Sep-21
9	vermicación de Documentos de proceso.	Color 1	Body Colol 1	Ing. Procesos	Castañeda	REAL	1-Sep-21

Figura 4.6 – Plan

4.4 Implementación de plan de acción

En conjunto con el equipo multidisciplinario se destinaron las actividades para realizar las acciones definidas en el plan de acción, las primeras actividades se basaron en el desarrollo del nuevo método, aplicación, ensamble y liberación (Ver figuras 4.7, 4.8, 4.9 y 4.10).

Figura 4.7 - Pruebas Tape

Figura 4.9 - Calidad

Figura 4.8 – Pruebas Clip

Figura 4.10 - Cambio

La figura 4.11 representa el desarrollo del nuevo lay out del proceso dentro de body color 1.

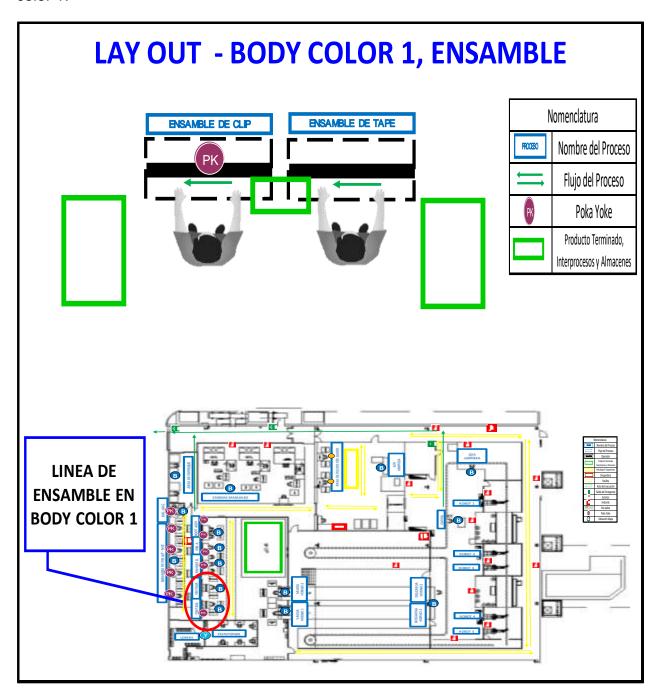


Figura 4.11 – Lay Out Nueva Condición

La figura 4.11 representa el lay out del nuevo método de aplicación el cual es dentro de la línea de pintura de body color 1, el cual tiene un lay out ya establecido desde su inicio de actividades como línea productiva.

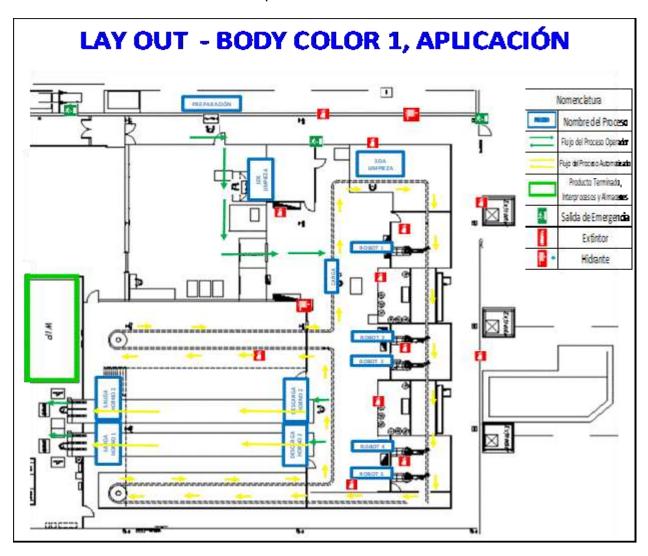


Figura 4.12 – Lay Out Body Color

Conforme a lo establecido en el plan de acción se realizó la actualización de los documentos de la línea de producción tales como HOE (Ver Figuras 4.13 y 4.14), Matriz de Diferencias (Ver Figura 4.15) y Control 3N (Ver Figura 4.16) dentro de los estándares establecidos para el área de Body Color 1.

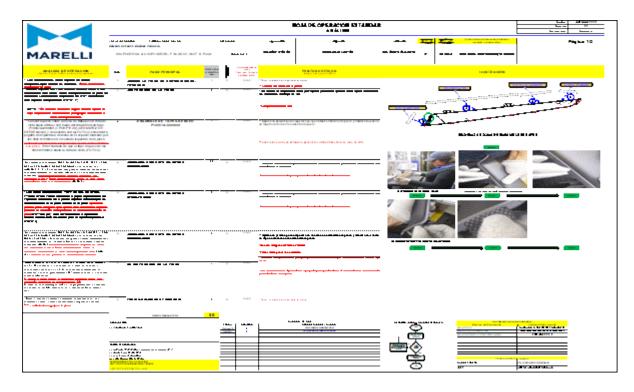


Figura 4.13 – HOE 1

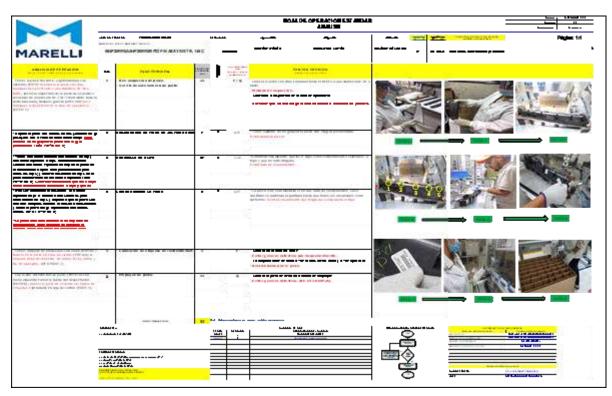


Figura 4.14 – HOE 2

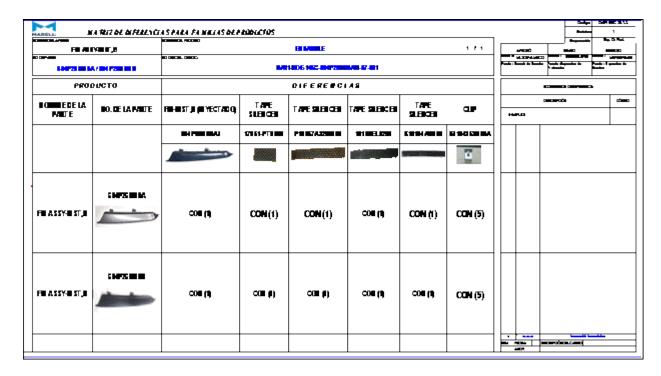


Figura 4.15 – Matriz de Diferencias

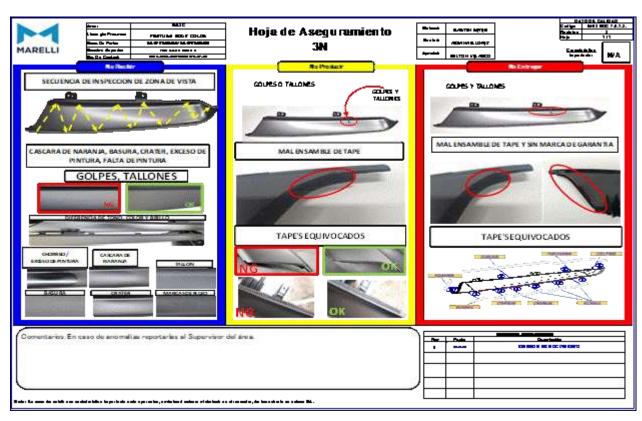


Figura 4.16 - Control, 3N

4.5 Evaluación de la efectividad de las acciones implementadas.

Dentro de las actividades de mejora para el cambio de método se realizó un Kaizen con los estándares que maneja la empresa para tomarlo como evidencia de cambio y como presentación en los temas relacionados dentro de la empresa.

La figura 4.17 representa el estándar de Kaizen solicitado por la empresa.

Figura 4.17 – KAIZEN MARELLI

Se dio seguimiento a los reportes de producción diarios (RECORD) para verificar la efectividad de la línea de producción con el cambio de aplicación y así mismo realizar la toma de tiempos para establecer el tiempo JPH de la línea.

La figura 4.18 representa el reporte de producción por hora en la línea del producto P33.

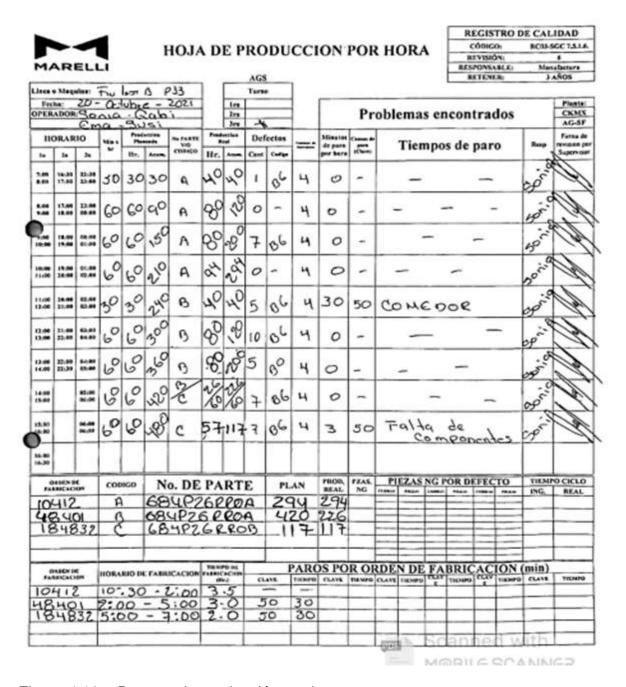


Figura 4.18 – Reporte de producción por hora.

4.6 Auditoria de procesos de pintura y ensamble.

Se realizan actividades de auditorías diariamente a la línea de producción al inicio de turno para verificar el funcionamiento de los equipos de la línea del producto P33 y con ello garantizar la calidad y el cumplimiento al plan de producción.

La figura 4.19 muestra la auditoria diaria en la línea del producto P33 al inicio de turno para verificar que la línea se encuentre en óptimas condiciones para la producción.

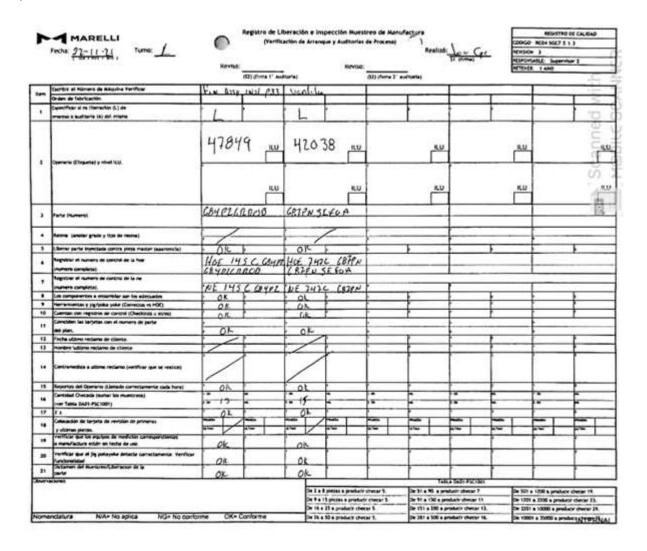


Figura 4.19 – Auditoria Diaria

Dentro de las actividades de auditoria se realiza la observación de la operación con forme lo marca el ILUO del área de Body Color 1 para garantizar que el personal que se encuentra operando cuenta con la capacitación necesaria para realizar la operación.

La figura 4.20 muestra el formato de observación de la operación con el estándar de la empresa.

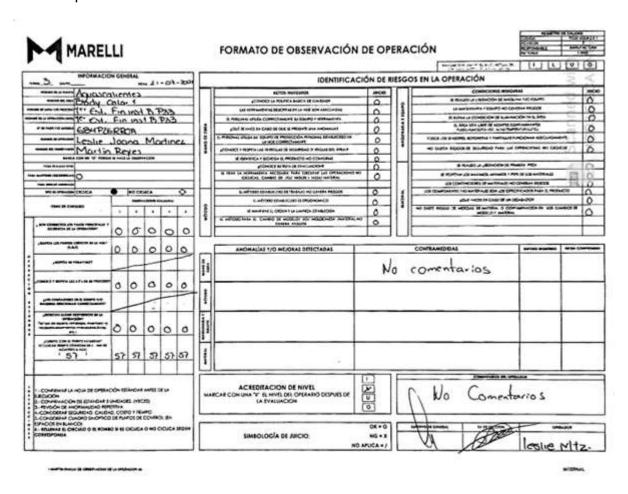


Figura 4.20 – Observación de la operación.

Se implementó un check list de revisión de jig poka-yoke y en base a este se realiza la auditoria para garantizar un funcionamiento adecuado del jig de ensamble.

La figura 4.21 muestra el check list implementado en la línea del producto P33.

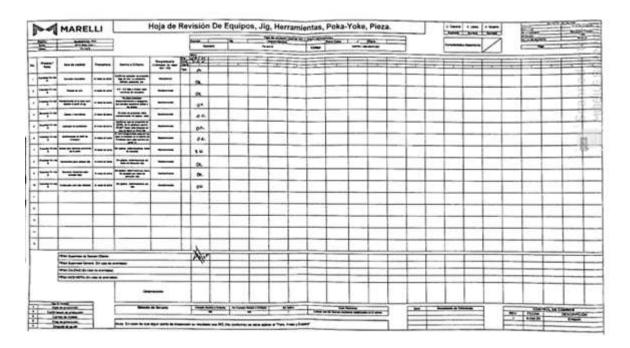


Figura 4.21 – Check List.

CAPÍTULO 5: RESULTADOS

5.1 Resultados.

Los resultados que se obtienen durante la realización del proyecto es que se logró el objetivo de realizar el cambio de aplicación del producto P33A.

Para la obtención de toda esta información, que se refleja en las gráficas que se elaboraron durante este tiempo (Junio/Octubre), se estuvo llevando el registro del defectivo que se reportaba en la línea de producción durante los pilotajes e inicio de producción en la línea anterior, con los cuales se genera el reporte final que se muestran como resultados (Tablas 5.1, 5.2, 5.3, 5.4 y 5.5 y figuras 5.1, 5.2 y 5.3) al igual que se continuo con las mismas actividades de recolección al arranque de la línea en la nueva área destino y se continuó documentando los datos de la línea con los nuevos estándares.

Con la recolección de datos se determinó un DPR del 76% al inicio de producción (Ver Tabla 5.1 y Figura 5.1), en comparación con el 55% de la línea anterior.

FECHA	PART NUM	DESCRIP	DEFECTIVO	DEF. ACUM	% DEF.	PIEZAS OK
20210917	687 P65 RROA	FIN-INST,B	80	80	27.59%	210
20210915	687 P65 RROA	FIN-INST,B	78	158	27.08%	210
20210928	687 P65 RROA	FIN-INST,B	77	235	26.83%	210
20210901	687 P65 RROA	FIN-INST,B	75	310	26.32%	210
20210927	687 P65 RROA	FIN-INST,B	74	384	26.06%	210
20210906	687 P65 RROA	FIN-INST,B	73	457	25.80%	210
20210929	687 P65 RROA	FIN-INST,B	72	529	25.53%	210
20210910	687 P65 RROA	FIN-INST,B	71	600	25.27%	210
20210930	687 P65 RROA	FIN-INST,B	69	669	24.73%	210
20210907	687 P65 RROA	FIN-INST,B	68	737	24.46%	210
20210924	687 P65 RROA	FIN-INST,B	68	805	24.46%	210
20210903	687 P65 RROA	FIN-INST,B	66	871	23.91%	210
20210914	687 P65 RROA	FIN-INST,B	64	935	23.36%	210
20210913	687 P65 RROA	FIN-INST,B	62	997	22.79%	210
20210923	687 P65 RROA	FIN-INST,B	61	1058	22.51%	210
20210908	687 P65 RROA	FIN-INST,B	59	1117	21.93%	210
20210921	687 P65 RROA	FIN-INST,B	59	1176	21.93%	210
20210909	687 P65 RROA	FIN-INST,B	57	1233	21.35%	210
20210920	687 P65 RROA	FIN-INST,B	56	1289	21.05%	210
20210902	687 P65 RROA	FIN-INST,B	54	1343	20.45%	210
20210922	687 P65 RROA	FIN-INST,B	45	1388	17.65%	210
	тот	AL	1388		23.94%	4410

Tabla 5.1 - Septiembre

Figura 5.1 – Pareto Septiembre

Con la estabilización de la línea de producción se logró incrementar el DPR hasta 93% (Ver Tabla 5.2 y Figura 5.2).

FECHA	PART NUM	DESCRIP	DEFECTIVO	DEF. ACUM	% DEF.	PIEZAS OK	OBJETIVO DPR	OBJ. DEF. POR LOTE
20211001	687 P65 RROA	FIN-INST, B	23 5	235	20.28%	924	90%	102
20211004	687 P65 RROA	FIN-INST, B	195	430	17.43%	924	90%	102
20211005	687 P65 RROA	FIN-INST, B	140	570	13.16%	924	90%	102
20211006	687 P65 RROA	FIN-INST, B	118	688	11.32%	924	90%	102
20211007	687 P65 RROA	FIN-INST, B	74	762	7.41%	924	90%	102
20211018	687 P65 RROA	FIN-INST, B	51	813	5. 23 %	924	90%	102
20211012	687 P65 RROA	FIN-INST, B	50	863	5.13%	924	90%	102
20211025	687 P65 RROA	FIN-INST, B	49	912	5.04%	924	90%	102
20211019	687 P65 RROA	FIN-INST, B	48	960	4.94%	924	90%	102
20211008	687 P65 RROA	FIN-INST, B	47	1007	4.84%	924	90%	102
20211028	687 P65 RROA	FIN-INST, B	46	1053	4.74%	924	90%	102
20211022	687 P65 RROA	FIN-INST, B	45	1098	4.64%	924	90%	102
20211026	687 P65 RROA	FIN-INST, B	44	1142	4.55%	924	90%	102
20211011	687 P65 RROA	FIN-INST, B	43	1185	4.45%	924	90%	102
20211014	687 P65 RROA	FIN-INST, B	43	1228	4.45%	924	90%	102
20211027	687 P65 RROA	FIN-INST, B	43	1271	4.45%	924	90%	102
20211015	687 P65 RROA	FIN-INST, B	42	1313	4.35%	924	90%	102
20211020	687 P65 RROA	FIN-INST, B	42	1355	4.35%	924	90%	102
20211013	687 P65 RROA	FIN-INST, B	39	1394	4.05%	924	90%	102
20211029	687 P65 RROA	FIN-INST, B	39	1433	4.05%	924	90%	102
20211021	687 P65 RROA	FIN-INST, B	38	1471	3.95%	924	90%	102
	TOT.	AL	1471		7.05%	19404		2142

Tabla 5.2 - Octubre

Figura 5.2 - Pareto Octubre

La comparativa de los dos procesos (Ver Tabla 5.3 y Figura 5.3) arrojo un resultado significativo con el cambio y se logró la disminución del SCRAP y con ello se continúa la mejora continua mediante la metodología Kaizen.

FECHA	PARTNUM	DESCRIP	DEFECTIVO	DEF. ACUM	% DEF.	PIEZAS OK
INICIO AUTOMATIZADO SEPTIEMBRE	687 PG5 RROA	FIN-INST,B	1388	1388	23.94%	4410
ESTABILIZACIÓN AUTOMATIZADO OCTU	687 PG5 RROA	FIN-INST,B	1471	2859	7.05%	19404
PILOTAJE MANUAL JULIO	687 PG5 RROA	FIN-INST,B	190 3	4762	73.82%	675
PILOTAJE MANUAL JUNIO	687 PG5 RROA	FIN-INST,B	2170	69 32	73.68%	775
INICIO MANUAL AGOSTO	687 PG5 RROA	FIN-INST,B	504 3	11975	54.81%	4158
	TOT	AL	11975		28.93%	29422

Tabla 5.3 - General

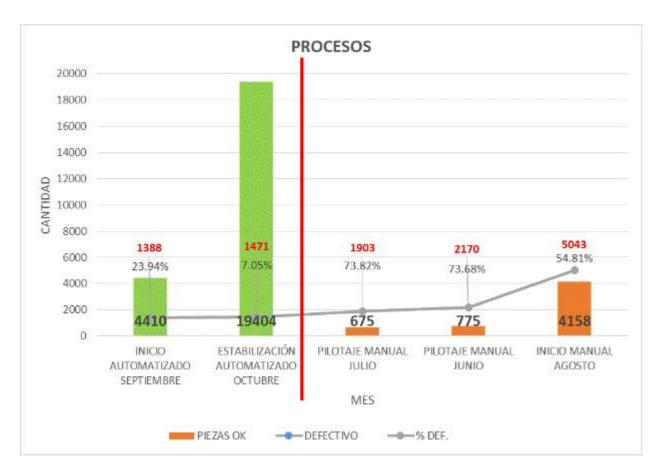


Figura 5.3 - Grafica General

Como resultado del cambio realizado en la aplicación de pintura del modelo P33A se logró aumentar de manera directa en el proceso de fabricación el JPH de la estación de ensamble ya que anterior mente el personal trabajaba bajo la frecuencia del personal de aplicación de pintura y al realizar el cambio el personal trabaja a un ritmo más elevado porque siempre tienen material para ensamble (Ver Tabla 5.4 y 5.5).

20210802 687 0 20210808 687 0 20210806 687 0 20210809 687 0	7 P6SRRDA P6SRRDA	DESCRIP FIN INST.B FIN INST.B	A	A 9:00 11 19	A	10:01 A 11:00 11	A	12:01 A	13:01 A	14:01 A 15:00	15:01 A	A	22:31 A	23:00 A	00:01 A	1:01 A	2:01 A	3:01 A	4:01 A	5:01 A	6:01 A	TOTA PIEZA
20210802 687 0 20210808 687 0 20210806 687 0 20210809 687 0	7 P6SRRDA 7 P6SRRDA 7 P6SRRDA	FIN-INST,B FIN-INST,B	A 8:00 4 D	A 9:00 11 19	A 10:0	A 11:00 11	A 12:00	A 13:00	A	A	A	A		23:00 A		A	2:01 A				A	
20210808 687 F 20210806 687 F 20210809 687 F	7 P6SRRDA P6SRRDA	FIN INST.B	_	15			15	17			16:00	16:30	23:00	00:00	1:00	2:00	3:00	4:00	5:00	6:00	7:00	
20210B06 687 P 20210B09 687 I	P6SRRDA		_		Z D	17			17	18	18	9	6	15	13	18	13	16	16	15	ш	252
20210BDB 687 (FIN INST, B	18			17	21	23	72	15	14	п	9	24	23	3D	24	27	26	Z 8	21	378
				15	Z D	246	23	21	Z	23	24	13	12	Z	Z	28	23	23	Z	24	23	420
בומחוכתב	7P6SRRDA	FIN INST,B	15	24	28	246	31	77	77	31	Z 8	15	11	Z	34	28	3D	33	Z	37	28	SD4
AVAILED BY	7P6SRRDA	FIN INST,B	8	77	Z D	246	23	24	Z	23	24	9	8	Z	Z	28	23	31	Z	24	77	420
ZD 2 LOB 16 687 F	7P6SRRDA	FIN-INST,B	п	6	12	9	14	15	13	16	15	6	D	14	17	15	18	16	15	Z D	16	252
ZO 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7P6SRRDA	FIN INST,B	D	14	14	14	15	15	15	15	15	7	D	16	16	16	16	16	16	16	16	252
ZD 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7P6SRRDA	FIN INST,B	D	21	21	21	21	21	Z	Z	Z	12	12	Z	Z	28	28	28	Z 8	Z 8	26	420
ZD21JBEZD 687 (7P6SRRDA	FIN-INST,B	6	14	14	14	14	14	14	14	14	5	3	15	15	16	16	16	16	16	16	252
20210823 6871	7P6SRRDA	FIN-INST,B	D	D	15	15	15	15	15	15	15	9	D	15	15	15	19	15	15	15	먑	254
ZD 21.08Z5 687 F	7P6SRRDA	FIN INST,B	17	14	14	14	17	15	17	16	15	7	6	18	18	18	17	15	18	17	17	254
20210626 6671	7P6SRRDA	FIN-INST,B	D	D	D	18	15	17	21	15	16	7	4	ш	13	11	9	16	12	9	12	210
ZD 21.0827 687 (7P6SRRDA	FIN-INST,B	D	D	D	D	D	D	D	D	D	D	12	Z	Z	28	23	23	Z	24	Z	210

Tabla 5.4 – Producción Anterior

PRODUCCIÓN POR HORA CONDICIÓN NUEVA (OCTUBRE)																						
							PRIME	R TUR	ND				TENCER TUNNO									
FECHA	PART NUM	DESCRIP	7:01 A 8:00	A		10:01 A 11:00	11:01 A 12:00		13:01 A 14:00			16:01 A 16:30	22:31 A 23:00		00:01 A 1:00	1:01 A 2:00	2:01 A 3:00	3:01 A 4:00	4:01 A 5:00	5:01 A 6:00	6:01 A 7:00	TOTA I
20211001	667 P65 RROA	FIN-INST,B	47	Ω	Ω	Ω	Ω	Ω	Δ	Δ	Ð	B	20	Ð	Ω	52	52	52	Ω	Ω	Ω	924
20211004	667 P65 RROA	FIN-INST,B	47	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	B	20	Ω	Ω	52	52	52	Ω	Ω	Ω	924
2021100E	667 P65 RROA	FIN-INST, B	47	Ω	Ω	Ω	Ω	Ω	Δ	Δ	Ω	B	20	Ω	Ω	52	52	52	Ω	Ω	Ω	924
20211006	667 P65 RROA	FIN-INST,B	47	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	B	20	Ω	Ω	52	52	52	Ω	Ω	Ω	924
20211007	667 P65 RROA	FIN-INST,B	47	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ŋ	B	20	Ð	Ω	52	52	52	Ω	Ω	Ω	924
20211018	667 P65 RROA	FIN-INST,B	47	Ω	Ω	Ð	Ð	Ω	Ω	Ω	Ω	B	20	Ω	Ω	52	52	52	Ω	Ω	Ω	924
20211012	667 P65 RROA	FIN-INST,B	47	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	B	26	Ð	Ω	52	52	52	Ω	Ω	Ω	924
20211025	667 P65 RROA	FIN-INST,B	47	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	B	20	Ω	Ω	52	52	52	Ω	Ω	Ω	924
20211019	667 P65 RROA	FIN-INST,B	47	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	B	20	Ω	Ω	52	52	52	Ω	Ω	Ω	924
20211008	667 P65 RROA	FIN-INST,B	47	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Z	20	Ð	Ω	52	52	52	Ω	Ω	Ω	924
20211028	667 P65 RROA	FIN-INST,B	47	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	B	20	Ω	Ω	52	52	52	Ω	Ω	Ω	924
20211002	667 P65 RROA	FIN-INST,B	47	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	B	20	Ω	Ω	52	52	52	Ω	Ω	Ω	924
20211026	667 P65 RROA	FIN-INST,B	47	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	B	20	Ω	Ω	52	52	52	Ω	Ω	Ω	924
20211011	667 P65 RROA	FIN-INST,B	47	Ω	Ω	Ω	Ω	Ω	Ω	Ð	Ω	B	20	Ω	Ω	52	52	52	Ω	Ω	Ω	914
20211014	667 P65 RROA	FIN-INST,B	47	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	B	26	Ω	Ω	52	52	52	Ω	Ω	Ω	924
20211007	667 P65 RROA	FIN-INST,B	47	Δ	Δ	Δ	Δ	Δ	Δ	2	Ω	B	26	Ω	Ω	52	52	52	Ω	Ω	Ω	924
20211015	667 P65 RROA	FIN-INST,B	47	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	B	26	Ω	Ω	52	52	52	Ω	Ω	Ω	924
20211020	667 P65 RROA	FIN-INST,B	47	Δ	<u>Δ</u>	Δ	<u> </u>	<u>Δ</u>	2	2	Δ	B	26	Δ	Ω	52	52	52	Ω	Ω	Ω	924
20211013	667 P65 RROA	FIN-INST,B	47	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	B	26	Ω	Ω	52	52	52	Ω	Ω	Ω	924
20211029	667 P65 RROA	FIN-INST,B	47	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	E	26	Ω	Ω	52	52	52	Ω	Ω	Ω	924
20211021	667 P65 RRDA	FIN-INST,B	47	$\mathbf{\Omega}$	Ω	Ω	$\mathbf{\Omega}$	$\mathbf{\Omega}$	$\mathbf{\Omega}$	$\mathbf{\Omega}$	Ω	B	20	Ω	$\mathbf{\Omega}$	52	52	52	Ω	Ω	Ω	924

Tabla 5.5 – Producción Actual

Las tablas anteriores muestran la producción de agosto con un proceso de aplicación manual de pintura y del mes de octubre con el cambio de aplicación al método automatizado. El mes de Septiembre fue realizada la estandarización de las condiciones del método nuevo a la par que se producía con la condición anterior para evitar afectaciones al cliente.

Se retroalimento al personal y se concientizó acerca del correcto uso de su documentación para el desarrollo de las actividades como lo es la Hoja de Operación Estándar.

CAPÍTULO 6: CONCLUSIONES

6.1 Conclusiones del Proyecto

Se logró realizar el cambio de aplicación de manera que no se vieran afectados los estándares solicitados por el cliente y a su vez el cumplimiento con los lotes de producción solicitados por el mismo.

A la par del cambio se vio reflejado un incremento del JPH lo cual beneficio al cumplimiento de los requerimientos del cliente y a su vez se redujo de manera considerable el SCRAP de la línea de producción del P33A con respecto a la condición anterior en un 50%, siendo este un punto crítico del proceso anterior.

En el transcurso de este proyecto con todas las actividades de mejora continua que se realizaron y con el apoyo de la herramienta de la metodología de Kaisen, con estas mejoras dentro de la empresa y del área de Body Color 1, contribuimos a la Calidad Premium, se logra además el desarrollo de talento en nuestros colaboradores, ya que durante las actividades hubo muy buenas ideas por parte del equipo multidisciplinario, se concientizó a los colaboradores sobre la importancia de trabajar en un área segura, limpia y ordenada mediante la implementación de la metodología 5s´s (selección, orden, limpieza, estandarización y disciplina).

Me llevo una agradable experiencia de haber estado de cierta manera a cargo de personal operativo y trabajar en equipo para el logro de los objetivos establecidos.

CAPÍTULO 7: COMPETENCIAS DESARROLLADAS

7.1 Competencias desarrolladas y/o aplicadas

- Se aplicaron habilidades directivas, gestión e innovación del proceso de Pintado para la toma de decisiones en forma efectiva, con una orientación sistémica y sustentable.
- Se aplicaron métodos cuantitativos y cualitativos en el análisis e interpretación de datos en el proceso, para la mejora continua atendiendo estándares de calidad requeridos por la empresa.
- 3. Se implementaron KAISENES para efectuar la mejora continua.
- 4. Se gestionaron sistemas integrales de calidad para la mejora de los procesos, ejerciendo un liderazgo estratégico y un compromiso ético.
- 5. Se dirigió un equipo de trabajo para la mejora continua y el crecimiento integral de la organización.
- Se promovió el desarrollo del capital humano, para la realización de los objetivos de la empresa.
- 7. Se aplicaron métodos, técnicas y herramientas para la solución de problemas.

CAPÍTULO 8: FUENTES DE INFORMACIÓN

8.1 Fuentes de información

Referencias

- (30 de Julio de 2015). Obtenido de https://www.esan.edu.pe/apuntesempresariales/2015/07/kaizen-filosofia-japonesa-mejora-continua/
- Andreu, I. (15 de Julio de 2021). APD. Obtenido de https://www.apd.es/lean-manufacturing-que-es/
- Antonucci, I. (10 de MARZO de 2021). *ATLAS CONSULTA*. Obtenido de https://www.atlasconsultora.com/mejora-continua/
- APD. (26 de Enero de 2019). APD. Obtenido de https://www.apd.es/filosofia-kaizen/
- Arteaga, A. A. (s.f.). *LEAN MEXICO*. Obtenido de https://www.leanconstructionmexico.com.mx/post/lean-manufacturing-qu%C3%A9-es-principios-herramientas-y-ejemplos
- Berestein, M. (1 de Diciembre de 2011). *emprendedoresnews*. Obtenido de https://emprendedoresnews.com/tips/crm/%C2%BFque-es-lean-manufacturing-o-manufactura-esbelta.html
- BIZNEO. (s.f.). Obtenido de https://www.bizneo.com/blog/metodo-kaizen/
- Calidad, B. (7 de Octubre de 2013). *ISOTools*. Obtenido de https://www.isotools.org/2013/10/07/metodologia-lean-kaizen/
- CETYS. (11 de Marzo de 2021). *Educación Continúa*. Obtenido de https://www.cetys.mx/educon/que-es-la-manufactura-esbelta-y-el-metodo-kaizen/
- Henao, A. M. (15 de Julio de 2019). *Denker Ingenieria*. Obtenido de https://denkeringenieria.com/7-pasos-para-aplicar-la-metodologia-kaizen/
- India, K. I. (9 de Noviembre de 2015). *Kaizen Institute*. Obtenido de https://cl.kaizen.com/blog/post/2015/11/09/cual-es-la-diferencia-entre-kaizen-lean-y-six-sigma
- ISO Tools. (s.f.). Obtenido de https://www.isotools.org/soluciones/procesos/mejora-continua/
- Julio Yonque, M. G. (Mayo de 2002). Obtenido de https://sisbib.unmsm.edu.pe/bibvirtual/publicaciones/indata/v05_n1/kaisen.htm
- KAIZEN INSTITUTE. (s.f.). Obtenido de https://es.kaizen.com/evolucion-de-kaizen
- Management. (12 de Noviembre de 2016). *Management*. Obtenido de https://grupo-pya.com/kaizen-la-clave-la-ventaja-competitiva-japonesa-pdf/

- Marco, C. (21 de Noviembre de 2016). *ExceLence*. Obtenido de https://excelencemanagement.wordpress.com/2016/11/21/kaizen-filosofia-japonesa-enfocada-en-la-mejora-continua/
- Raul. (9 de Mayo de 2018). *Vision Industrial*. Obtenido de https://visionindustrial.com.mx/industria/calidad/kaizen-que-significa
- Reyes, P. (18 de Noviembre de 2008). Obtenido de https://es.slideshare.net/jcfdezmx2/kaizen-presentation-766638
- Sanchez, J. (12 de Octubre de 2009). *slideshare*. Obtenido de https://es.slideshare.net/jesussanval/k-a-i-z-e-n
- slideshare. (30 de Julio de 2008). Obtenido de https://es.slideshare.net/bomconsulting/kaizen-mejoramiento-continuo-lean-manufacturing
- Soto, J. d. (Agosto de 2003). *Info Libros*. Obtenido de https://infolibros.org/pdfview/10055-kaizen-la-clave-de-la-ventaja-competitiva-japonesa-de-masaaki-imai-analisis-de-lectura-jose-de-jesus-becerra-soto/
- *Tecnologia*. (s.f.). Obtenido de https://ticnegocios.camaravalencia.com/servicios/tendencias/las-herramientas-mas-importantes-en-lean-manufacturing/

CAPÍTULO 9: ANEXOS

Anexo 1. Carta de aceptación

Marelli Mexicana, S.A. de C.V.

Aguascalientes, Ags. A Lunes 30 de Agosto del 2021

ASUNTO: Carta Aceptación Becario

DR. JOSE ERNESTO OLVERA GONZALEZ DIRECTOR DEL INSTITUTO TECNOLOGICO DE PABELLON DE ARTEAGA INSTITUTO TECNOLOGICO DE PABELLON DE ARTEGA

Por este conducto me permito informar a usted que el C. Juan Ricardo Castañeda Santillán alumno de la carrera Ingeniería en Gestión Empresarial con No de control: A171050516, ha sido aceptado para realizar sus Residencias Profesionales en esta empresa, en el Departamento de Body Color 1 en el proyecto: "Cambio de aplicación de pintura de un proceso manual a uno automatizado en producto P33A", bajo la asesoría del Ing. Abraham Lopez Esparza , durante el periodo comprendido, Agosto-Diciembre 2021 con un horario de 7:00 am a 4:30 pm de Lunes a Viemes.

Se extiende la presente a petición del interesado para los fines que haya lugar.

Sin otro particular, me despido agradecien do de antemano la atención prestada y quedando a sus órdenes para cualquier aclaración.

Atentamente,

LRI CLAUDIA MARGARITA SOLIS Reclutamiento Prácticas Profesionales

INTERNAL

Av. San Francisco de los Romo #401 Parque Industrial San Francisco 2da. Sección San Francisco de los Romo, Ags. C.P.20300 México
TEL.52-449-910-1600

Instituto Tecnológico de Pabellón de Arteaga Departamento de Ciencias Económico Administrativas

Pabellón de Arteaga, Ags., No. de Oficio: Asunto:

DORA MARIA GUEVARA ALVARADO JEFA DEL DEPTO DE DIVISIÓN DE ESTUDIOS PROFESIONALES P R E S E N T E :

Por medio del presente se le notifica que la C. JUAN RICARDO CASTAÑEDA SANTILLAN con número de control A171050516 de la carrera de Ingeniería en Gestión Empresarial Modalidad Mixta se le ha autorizado el proyecto de residencias profesional denominado "Cambio de aplicación de pintura, de un proceso manual a uno automatizado en producto P33A" para el período agosto-diciembre de 2021

Sin otro particular, le envío un cordial saludo.

ATENTAMENTE

Excelencia en Educación Tecnológica» "Tierra Siemare Fértil"®

CYNTHIA ALEJANDRA RODRIGUEZ ESPARZA

JEFA DE DEPTO DE CIENCIAS ECONÓMICO ADMINISTRATIVAS: CIENCIAS ECONÓMICO

Archivo

Carretera a la Estación de Rincón Km 1, C.P. 20670 Pabellón de Arteaga, Aguascalientes Tel. (465) 958-2482 y 958-2730, Ext. 108 e-mail: cead_parteaga@tecnm.mx tecnm.mx | pabellon.tecnm.mx

